Advanced multivariable tools:

The end or the beginning of SDM?

Prof.dr.ir. Caspar Chorus

Professor of Choice behavior modeling
Head of department Engineering Systems and Services
Co-founder and scientific advisor Councyl

Disclosure

Co-founder, shareholder and scientific advisor to **Councyl**, a TU Delft spin-off which builds and commercializes

Behavioral AI Technology *(health, government, HR, financial sector)*

Research funded by the

European Research Council

Survey amongst medical professionals about the role of AI

- "The role of a skilled physician is to take into consideration what a machine / AI tells him and make the correct connection with clinical reality."
- "AI as an additional tool, not as something that will replace MDs or decrease autonomy and authority. A MD will always have the final verdict"
- "AI should never be a "black box". Doctors should be able to explain the results from AI tools with reasoning."

Martinho et al. (2021) – Artificial Intelligence in Medicine

Survey amongst patients / consumers about the role of AI

How do people answer to the question:

Should medical professionals be replaced by AI?

- NO! We need human insights and understanding
- YES! AI is more reliable, doesn't get tired
- It would work for others, **but not for me**, because I am unique

Longoni et al. (2019) – Journal of Consumer Research

What do these studies tell us?

Patients and doctors alike <u>clearly see the benefits of AI</u> in the medical domain

But there is a mutual wish to be taken seriously:

- The doctor as an expert (with experience, know-how,...)
- The patient as a **person** (with preferences, fears,...)

Herein lies an essential aspect of shared decision making

Explainability, Subtlety and Flexibility (of the AI) are key to ensure a fruitful conversation between doctor and patient.

How does AI codify and support (medical) decisions?

Two extreme examples of how AI captures human knowledge:

A rule based system (expert system, protocol)

A (deep) neural network or other form of machine learning

Problematic from viewpoint of SDM

Machine learning tools are based on extremely flexible and subtle but in-transparent web of connections.

Need large volumes of training data (**objective health outcomes**) which are not always available and if they are, they might be **biased.**

Problematic from viewpoint of SDM

Rule-based expert systems are fully transparent but leave no room for discussion, are disconnected from subtle aspects of patients and context.

Demand explication of knowledge by experts.

What does BAIT promise?

Benefits of AI (digitization of expertise, scalability, uniformity and efficiency; "your colleagues in your pocket")

While maintaining:

- Explainability no black box, but insight into drivers of decision
- **Subtlety** no protocol, but weighing of various aspects*
- Flexibility outcome is a probabilistic

And without needing explication of expert knowledge nor BigData

* *Including the patient's wishes*

Covid-19 patient — admit to ICU? If yes, intubate or not?

Step 1: choice experiment with hypothetical cases

Your choices reveal your expertise (importance you attach to factors)

Cases constructed such, that each choice contains maximum information

Hence: 16 intensivists * 25 choices suffices to capture knowledge base

Covid-19 patient – admit to ICU? If yes, intubate or not?

Step 2: model estimation and introspection

How do we make our choices?

Which handful of factors determines our decisions?

Are effects linear (proportional) or not?

Do expert-segments differ in their decision making?

Covid-19 patient — admit to ICU? If yes, intubate or not?

Step 3: 'play' with the model

For artificial cases generated by intensivists, model generates expert opinion (e.g. 89% of peers would admit this patient to ICU)

Indicates which were key factors behind the prediction (pos. and neg. through color-coding)

Offers first test of 'face validity' and stimulates discussion.

Covid-19 patient — admit to ICU? If yes, intubate or not?

Step 4: validate and learn

Retrospective validation: apply Nov '20 model on decisions made in March '20:

- Four intensivists scored same
 patients in terms of input factors.
- Councyl-model predicted admission / intubation.
- Comparison between predictions, stated and true outcomes

Results (summary):

- >80% correspondence
- When no 'match', model correctly predicted that intensivists where not in mutual agreement either

Covid-19 patient — admit to ICU? If yes, intubate or not?

Step 5: continuous learning and validation

A self-learning decision support system

- Every new (real-life) choice is fed into the model
- So it keeps track of updated knowledge, evolution of norms, new compositions of the team
- Learning rate is controlled, e.g. more weight to senior staff or to choices made w high certainty

Similar results for a National case study into surgery v. comfort care for a critically ill neonate (NEC)

Weight for parental preferences: 10% (same as ICU-Case)

Now what are the prospects of BAIT for SDM?

- (How) will it affect autonomy of the expert and patient?
 ("hiding behind the numbers")
- How to deal with the numbers? "90% of us wouldn't operate"
 - "then please give me one of the other 10%"
- Will it help or hinder appeal processes?
- How to avoid echo chamber effects converging expert beliefs; or should we be glad with them?

Our twisted relation with AI...

Is AI any good at recommending jokes?

- **YES**, people like jokes recommended by AI better than those recommended by humans
- NO, people like jokes recommended by humans better than those recommended by AI

- It depends:

- When people know the joke is recommended by AI, they don't like it
- When they do not know this, they like AI-recommended jokes better

(*Agrawal 2020*)

Thank you for your attention!

caspar@councyl.ai

c.g.chorus@tudelft.nl

Further reading

Martinho, A., Kroesen, M., & Chorus, C. (2021). A healthy debate: Exploring the views of medical doctors on the ethics of artificial intelligence. *Artificial Intelligence in Medicine*

Ten Broeke, A., Hulscher, J., Heyning, N., Kooi, E., & Chorus, C. (2021). BAIT: A New Medical Decision Support Technology Based on Discrete Choice Theory. *Medical Decision Making*

de Metz, J., Thoral, P.J., Chorus, C.G., Elbers, P.W.G., van den Bogaard, B., 2021. Behavioural Artificial Intelligence Technology for COVID-19 intensivist triage decisions: making the implicit explicit. *Intensive Care Medicine*

https://councyl.ai/en

